تحلیل نقش انبار داده در آموزش عالی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد علم اطلاعات و دانش‌شناسی دانشگاه الزهرا (س)

2 دانشیار گروه علم اطلاعات و دانش‌شناسی دانشگاه الزهرا (س)

3 مربی گروه کامپیوتر دانشگاه تربت حیدریه

چکیده

تصمیمات اجرایی، تاکتیکی و راهبردی در هر سازمانی اتخاذ می‌شوند. در هر سه سطح، نمونه‌هایی از داده‌ها یافت می‌شود که قابلیت تبدیل به ابزار سودمند برای پشتیبانی از تصمیم را دارند. آموزش عالی می‌تواند از انبار داده در تصمیم‌گیری بهره گیرد. هدف پژوهش حاضر، بررسی کاربرد انبار داده در تصمیم‌گیری در آموزش عالی و مقایسة داده‌های ارائه ‌شده توسط انبار داده‌های مراکز آموزش عالی متفاوت است. در این مقاله، از روش توصیفی تحلیلی استفاده شده است. در بخش نخست مقاله، مفاهیم و کاربرد انبار داده[1] در تصمیم‌گیری بیان می‌شود و سپس معماری انبار داده‌ بیان می‌گردد. در بخش پایانی، مقایسة تحلیلی میان انبار داده مراکز آموزش عالی متفاوت صورت می‌گیرد و بخش‌هایی از انبار داده که برای اغلب دانشگاه‌ها مناسب است و می‌تواند به کار رود، پیشنهاد می‌شود. نتایج این پژوهش نشان می‌دهد که در مراکز آموزش عالی به دلیل نیاز‌های اطلاعاتی کاربرانشان، دیتا‌مارت[2]‌های گوناگونی با داده‌های متفاوت استفاده می‌شود؛ اما آنها در برخی از فیلدهای فراهم‌شده نقاط اشتراکی نیز دارند.



1. Data Warehouse


2. Data mart

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of the Role of Data Warehouse in Higher Education

نویسندگان [English]

  • Mina Farnaghi 1
  • Saeid Rezaei Sharifabadi 2
  • Seyyed Ehsan Yasrebi Naeini 3
چکیده [English]

Executive, tactical and strategic decisions are common in any organization. At all three levels, examples of data are found and can become useful tools to support their decision. Higher education is also one of the parts that can benefit from data warehouse. The objective of this research is to examine the use of data warehousing in higher education  decision-making and to compare the types of data in data warehouse that are provided by various higher education institutes. In this paper, a description - analytic method is used. In the first part of this article, the concepts of data warehouse and its application in decision-making is expressed. Next, the data warehouse architecture which should be considered in designing a data warehouse is explained. In the next section, analytical comparison among data warehouses of different higher education institutes have been done, and finally we have recommended parts of a data warehouse that can be used and is suitable for most universities. The general findings of the study show different higher education centers use various data marts with different kinds of information because of information needs of users, but they are common in some provided data.

کلیدواژه‌ها [English]

  • Data warehouse
  • Data marts
  • Decision support system
  • Higher Education

ادیبی، ژینوس (1387). چارچوب ارزیابی قابلیت سازمان برای پیاده‌سازی انبار داده. پایان‌نامة کارشناسی ارشد مدیریت فنّاوری اطلاعات، دانشگاه الزهرا (س).

کاهانی، محسن (1381). طراحی سیستم جامع اطلاعات و MIS دانشگاه فردوسی مشهد، جلد 2. مرکز کامپیوتر، آمار و اطلاعات دانشگاه.

یثربی، احسان (1382). طراحی و پیاده‌سازی انبارة داده مرکزی تحت وب. پایان‌نامة کارشناسی ارشد گروه کامپیوتر دانشگاه فردوسی مشهد.

 

Bain, T., Benkovich, M., Dewson, R., Ferguson, S., Graves, C., Joubert, T.J., Lee, D., Scott, M., Skoglund, R., Turley, P and Youness, S. (2001). Professional SQL Server 2000 Data Warehousing with Analysis Service. Wrox Press, Birmingham, United Kingdom.

Distefano, J. (1999). The decisioning frontier: Blending history, experience and intuition. DM Review, 9, p. 14.

Foley, J. (1997). Data warehouse pitfalls. InformationWeek, (631), 93-96. http://search.proquest.com/docview/229057199?accountid=45209

Gartner, J., Maberry, S., & O’Connell, W. (2005). Data Warehouse Software Maintenance Strategy. IBM Corporation.

Guan, J., Nunez, W., & Welsh, J. F. (2002). Institutional strategy and information support: the role of data warehousing in higher education. Campus-Wide Information Systems, 19(5), 168 - 174.

Heise, D. L. (2006). Data warehousing and decision making in higher education in the United States. Ph.D. 3209766, Andrews University, United States -- Michigan. Retrieved from http://search.proquest.com/docview/304959463?accountid=45209 ABI/INFORM Global; ProQuest Dissertations & Theses (PQDT) database.

Hwang, H.G., Ku, C.Y., Yen, D.D. and Cheng, C.C. (2004). Critical factors influencing the adoption of data warehouse technology: a case study of the banking industry in Taiwan. Decision Support Systems, (37), 1-21.

Inmon, W. H. (1996). Building the data warehouse: Wiley & Sons Inc., New Tork, NY.

Massy, W. F., & Wilger, A. K. (1998). Technology's contribution to higher education productivity. New Directions for Higher Education, 26(3), 49-59.

Oregon State University (2012). OUS/OSU Data Warehouse. Retrieved February 3, 2012, from http://oregonstate.edu/dept/computing/warehouse/

Tanler, R. (1997). The Intranet Data Warehouse, New York: John Wiley & Sons, Inc.

Turban, E., Aronson, J. E., & Liang, T.-P. (2004). Decision Support Systems and Intelligent Systems (7th edition ed.): Prentice-Hall.

UC Santa Cruz (2012). UCSC Data Management Services. Retrieved December 29, 2011, from http://planning.ucsc.edu/datamgmt/default.htm

University of California San Diego (2012). Data Warehouse. Retrieved February 16, 2011, from blink.ucsd.edu/technology/help-desk/queries/warehouse/index.html

University of Illinois (2012). Decision Support. Retrieved January 21, 2012, from http://www.ds.uillinois.edu/web/

University of Miami (2012). Data Warehouse System. Retrieved January 25, 2012, from http://www.miami.edu/index.php/hr/HR_systems /UMSYS/other_systems/data_warehouse_system/

University of Pennsylvania (2012). Pennsylvania Data Warehouse. Retrieved January 9, 2012, from http://planning.ucsc.edu /datamgmt/dwh/

Walker, D. M. (2010). Resolving Data Warehousing Challenges through Modeling. Data Management, 12. 

Watson, H. J., & Ariyachandra, T. (2005). Data Warehouse Architectures: Factors in the Selection Decision and the Success of the Architectures, Technical Report, Terry College of Business, University of Georgia, Athens, GA.

Weber, R. P., & Weber, J. E. (2000). The Use and Value of Data Warehousing in Higher Education. Mountain Plains Journal.