طراحی نظام جامع تصمیم‌گیری و زمان‌بندی برنامه‌ریزی نوین آموزشی دانشگاه پیام نور با رویکرد الگوریتم زنبور عسل (مطالعه موردی: دانشگاه پیام نور مرکز لامرد)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی صنایع دانشگاه پیام نور مرکز بین‌المللی عسلویه

2 استادیار گروه مهندسی صنایع دانشگاه پیام نور مرکز تهران

چکیده

پژوهش حاضر، مدلی برای مسئله زمان‌بندی درس‌های دانشگاهی به‌صورت تک‌هدفه کرده که هدف تهیه جدول زمانی درس‌های دانشگاهی قابل ‌قبول، با در نظر گرفتن مجموعه­ای از محدودیت­ها و ترجیح­های استادان، دانشجویان و دانشگاه با توجه به فضای آموزشی است. در این مسائل، جدول زمانی محدودیت­ها، به دودسته سخت و نرم که محدودیت­های سخت باید برآورده شده و شدنی بودن جواب را تضمین کند و محدودیت­های نرم که بیان‌کننده مطلوبیت و ترجیح­های مسئله بوده و برای کیفیت بهتر جدول زمانی در نظر گرفته می­شوند.
با توجه به اینکه مسئله‌ای حل نشدنی با پیچیدگی محاسباتی در پیش روی است، برای حل مدل­ها از الگوریتم­های فرا ابتکاری، الگوریتم زنبور عسل استفاده ‌شده است. برای افزایش سرعت برنامه جمعیت اولیه را به شکلی تولید کرده که تعداد زیادی از محدودیت­های سخت اشباع شوند. برای آزمودن مدل ریاضی و برنامه مورد نظر از داده­های دانشگاه پیام نور لامرد استفاده ‌شده است. حل مدل با روش زنبور عسل از دو تابع مهم رقص برای فرار از بهینه محلی و بهبود کارایی مسئله و درنهایت رسیدن به یک جواب قابل‌قبول، بهره‌برداری می‌شود. نتایج نشان می­دهد درنهایت دقت مدل ریاضی 94 درصد بوده و نسبت به وضعیت کلاسیک و عمومی شرایط بهتری دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Comprehensive Decision-Making System Design and the New Educational Planning Scheduling Using Bees Algorithm Approach (Case Study: Payam-e Noor University, Lamard)

نویسندگان [English]

  • Mahmoud Safari 1
  • Gholam Reza Ismailian 2
چکیده [English]

Abstract: In this study, a single-objective model is presented for academic courses schedule problem. The purpose of this problem is to make appropriate and acceptable timetable for university courses taking into account a set of constraints and preferences of professors, students and universities according to the educational environment in Iran. In schedule problems, constraints are divided into two categories: hard and soft, hard constraints must be met, and ensure the feasibility of a solution, and soft constraints that represent utility and preferences of a problem, they are considered for better quality of a schedule. Given that an unsolvable problem is associated with computational complexity, meta-heuristic algorithms and bees algorithm are used to solve the models. To speed up the application, the initial population is produced in a way that a lot of hard constraints are saturated. In order to test the mathematical model and the app in question, the Lamerd PNU data is used. Solving model using bees method are derived from two important functions of dance, to escape from local optimum and improve the efficiency of the problem, and finally reach an acceptable solution, the results show that the accuracy of the mathematical model is 94 per cent, and c is better than classic status and general condition.

کلیدواژه‌ها [English]

  • New education planning system
  • Decision-making expert system
  • Nonlinear mathematical modeling
  • Bees Algorithm
  • PNU
Abdullah. S. & Turabieh. H. (2012). On the use of multi neighborhood structures within a Tabu-based memetic approach to university timetabling problems. Information Sciences,Malaysia, 146-168.

Aladag, C. H.; Hocaoglu, G. & Basaran, M. A. (2009). The effect of neighborhood structures on tabu search algorithm in solving course timetabling problem. Expert Systems with Applications, 12349–12356.

Aladag, C. H. & Hocaoglu, G. (2007). A tabu search algorithm to solve a course timetabling problem. Hacettepe Journal of Mathematics and Statistics, 53- 64.

Alvarez-Valdés, R.; Parreño, F. & Tamarit, J. M. (2002). A tabu search algorithm for assigning teachers to courses, Top, 10, 239-259. https://doi.org/10.1007/BF02579018

Burke, E. K. & Petrovic, S. (2002). Recent research directions in automated timetabling. European Journal of Operational Research, 266–280.

Gunawan, A.; Ng, K. M. & Poh, K. L. (2012). A hybridized Lagrangian relaxation and simulated annealing method for the course timetabling problem. Computers & Operations Research, Singapore, 3074–3088.

Head, C. & Shaban, S. (2007). A heuristic approach to simultaneous course/student timetabling. Computers & Operations Research, 919–933.

Pham, D. T.; & Koç, E. (2010). Design of a two-dimensional recursive filter using the bee's algorithm. International Journal of Automation and Computing, 7 (3), 399-402.

Qaurooni. D. & Akbarzadeh-T. M-R. (2013). Course timetabling using evolutionary operators. Applied Soft Computing, 2504–2514.

Sabar, N. R.; Ayob, M.; Kendall, G. & Qu, R. (2012). A honey-bee mating optimization algorithm for educational timetabling problems. European Journal of Operational Research, 533-543.

Tereshko, V. & Loengarov, A. (2005). Collective decision making in honey-bee foraging dynamics. Computing and Information Systems, 9 (3), 1.

Wren, A. (1996). Scheduling, timetabling and rostering – A special relationship? In: Burke and Ross, 46–75.